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Abstract:  

The paper investigates the nonlinear self-adjointness of the nonlinear inviscid barotropic nondivergent vorticity 

equation in a beta-plane. It is a particular form of Rossby equation which does not possess variational structure 

and it is studied using a recently method developed by Ibragimov. The conservation laws associated with the 

infinite-dimensional symmetry Lie algebra models are constructed and analyzed. Based on this Lie algebra, 

some classes of similarity invariant solutions with nonconstant linear and nonlinear shears are obtained. It is also 

shown how one of the conservation laws generates a particular wave solution of this equation. 

Introduction 

The concepts of symmetry, invariants and 

conservation laws are fundamental in the study of 

dynamical systems, providing a clear connection 

between the equations of motion and their 

solutions. There are many reasons for computing 

symmetries and conservation laws corresponding to 

systems described by differential equations. In 

recent years, a remarkable number of mathematical 

models occurring in various research domains have 

been studied from the point of view of symmetry 

group theory [1–3]. The Lie symmetry approach is 

now an established route for the reduction of 

differential equations. The method centers on the 

algebra of one parameter Lie group of 

transformations admitted by the PDEs. Once 

known, the reduction of the PDE is standard and 

may lead to exact (symmetry invari- ant) solutions 

[4–8]. There are a number of reasons to find 

conserved densities of PDEs. Some conservation 

laws are physical (e.g., conservation of momentum, 

mass, energy, electric charge) and others facilitate 

analysis of the PDE and predict integrability. 

Conservation laws play an important role in the 

development of soliton theory, in the theory of non-

classical transformations [9], [10] and in the theory 

of normal forms and asymptotic inerrability [11]. 

The knowledge of conservation laws is also useful 

in the numerical integration of PDEs [12, 13], for 

example, to control numerical errors. Although No 

ether’s approach provides an elegant algorithm for 

finding conservation laws, it possesses a strong 

limitation: it can only be applied to equations that 

have variational structure. Finding methods for 

constructing conservation laws for equations 

without variational structure has been subject of 

intense research. For example, in [14] a nice 

relationship is established between symmetries and 

conservation laws for self-adjoint differential 

equations, an identity which does not depend on the 

use of a Lagrangian. Another interesting result 

concerns a direct link between the components of a 

conserved vector for an arbitrary partial differential 

equation and the LieBäcklund symmetry generator 

associated to the conserved vector’s components 

[15]. Recently, [16] demonstrated a new algorithm 

for finding conserved vectors associated to any 

symmetry of nonlinear self-adjoint evolutionary 

equation. Extensive research has been carried out in 
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order to find self-adjoint and quasiself-adjoint 

classes of equations and their conservation laws. 

For example, the necessary and sufficient 

conditions for a general fourth-order evolution 

equation to be selfadjoint is determined in [17], the 

quasi-self-adjointness of a generalized Camassa-

Holm equation was obtained in [18], a quasi self-

adjointness classification of quasilinear dispersive 

equations was carried out in [19]. The purpose of 

this paper is to apply the recent Ibragimov’s 

approach to the study of two-dimensional Rossby 

waves. The study of Rossby waves is one of the 

basic important problems in geophysical fluid 

dynamics such as atmospheric and oceanic 

circulation dynamics [20–22]. The Rossby waves 

studied in this paper are restricted on the following 

dimensionless inviscid barotropic nondivergent 

vorticity equation in a beta-plane [23]: 

 

Neglecting the effects of the Earth’s rotation (β = 

0), the general fluid dynamics can be described by 

the Navies Stokes equation. In [24] some exact 

solutions of the Navies-Stokes equation have been 

found from the symmetry group analysis. Because 

of the non-inerrability and of high nonlinearity of 

Eq. (1), one usually studies the Ross by waves 

numerically or approximately [25]. This paper is 

organized as follows. The essential points of 

Ibragimov’s method will be summarized and the 

nonlinear self-adjointness of evolution equation (1), 

the most important point of applying Ibragimov’s 

method, will be investigated in Section 2. The 

conservation laws provided by infinite-dimensional 

symmetry Lie algebra admitted by the 2D Rossby 

equation will be constructed in Section 3. The next 

section of the paper will illustrate the algorithm for 

constructing invariant solutions of our model with 

respect to some one-dimensional subalgebras of the 

whole Lie algebra. New such invariant solutions 

and a periodic solution provided by the non-trivial 

conservation law will be point out, respectively. 

Some concluding remarks will end the paper. 

2. Nonlinear self-adjointness  

There are many interesting results concerning the 

correspondence between symmetries and 

conservation laws. Because a large number of 

differential equations without variational structure 

admits conservation laws, an intense research has 

been devoted to find methods for constructing 

conservation laws for equations without variational 

structure. In this section we shall present 

Ibragimov’s method [16] which provides an elegant 

algorithm for finding conserved vectors which can 

be applied for any differential equation (or systems 

of equations) 

2.1. Ibragimov’s method 

Let us consider a partial differential equation 

 

where F is a differential function, x = (x 1 , ..., xn ) 

are the independent variables, the dependent 

variable is u = u(x) and u(n) is the set of all partial 

derivatives of u, up to n-th order. 

 The formal Lagrangian is introduced by the 

relation: 

 

It involves a new dependent variable v, the so-

called nonlocal variable. It is a similar approach as 

the use of ghost type variables [27]. Then, the 

adjoint equation of (2) is defined by 

 

is the total derivative operator with respect to x i , i, 

j, k = 1, . . . , n, and summation over repeated 

indices is assumed. 
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The equation F = 0 is said to be nonlinearly self-

adjoint if there exists a function 

 

for some undetermined coefficient λ. If v = φ(u) in 

(7) and (8), Eq. (2) is called quasi-selfadjoint. If v = 

u, the Eq. (2) is called strictly self-adjoint. 

Supposing that Eq. (2) is nonlinearly self-adjoint, 

then applying Ibragimov’s theorem to system (2), 

(4) with the formal Lagrangian (3), one obtains that 

any Lie point, contact, generalized or nonlocal 

symmetry 

 

admitted by (2) determines a conservation law DiC 

i = 0 for (2) with the components of the conserved 

vector given by 

 

 

After appropriate calculations, the adjoint equation 

is written as 

− vt(2x) − vt(2y) − ux v(2x)y + v(3y) + uy[v(2y)x + v(3x) ] − 

βvx + 2uxyv2x − 2vxyu2x = 0. (12) 

 It is easy to verify that this equation becomes the 

2D Rossby wave equation (1) multiplied with 

constant coefficient λ = −1, upon the substitution v 

= u.It means that the equation (1) is nonlinearly 

self-adjoint, specifically it is strictly self-adjoint 

Conservation laws provided by Lie point 

symmetrie 

Noether’s theorem cannot be directly applied to 

obtain conservation laws on the basis of the 

equation’s symmetries. This can be overcome by 

applying the general concept of nonlinear self-

adjointness developed by Ibragimov which enables 

to establish the conservation laws for any 

differential equation. 

Lie point symmetries of the 2D Rossby wave 

equation. 

The Lie algebra of the infinitesimal symmetries of 

the twodimensional Rossby wave equation (1) has 

been obtained in [26]. It involves two arbitrary 

functions of t and contains the following basis of 

symmetry operators: 

 

When the Lie algebra is computed, the following 

nonvanishing relations are obtained: 

 

3.2. Conservation laws associated with symmetries 

We will apply formula (10) for constructing the 

conserved vector associated with the symmetries 

(13) admitted by the 2D Rossby wave equation. 

Since the maximum order of derivatives involved 

in formal Lagrangian (11) is equal to three, this 

formula becomes: 

 

where the Lagrangian containing mixed derivatives 

should be written in the symmetric form 
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Invoking that the analyzed Eq. (2) is strictly self-

adjoint with the substitution v = u, we will replace 

in C i the nonlocal variables v with u, thus arriving 

to local conserved vectors for Rossby wave 

equation. Let us apply the procedure to C 1 . 

Consequently, the density of the conservation law 

is written in the following 

 

Dilation group 

 Consider the generator of the dilation group from 

the basis of operators (13), namely: 

  

 It is interesting to note that the symmetry operator 

X1 leaves invariant the action attached to the 

formal Lagrangian (3). This assertion can be easily 

checked using the Lie equations associated to X1. 

For this operator, the Lie characteristic has the 

form: 

W = −3u − tut + xux + yuy. (19) 

The substitution of (19) in (17) yields: 

 C 1 = 
1

3
{−tu[ut(2x) + ut(2y) ] + t[uxutx + uyuty] + u[xu(3x) 

+ yu(3y) + xux(2y) + yu(2x)y] − tut [u2x + u2y] + yu2xuy + 

xu2yux − (yux + xuy)uxy − 4u(u2x + u2y) + 2(u 2 x + u 
2 y )}. (20) 

 

 

 

 

 

 

 

 

We modify (20) by using the identities:  
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The quantities (32) do not have a direct physical 

significance, but they can generate interesting 

solitary wave solutions of (1), as it will be 

exemplified in subsection 4.2. 

 3.2.2. Translation group The one-parameter group 

of translations in the variables t and x is generated 

by the operators X2, X3 from the basis (13). We 

analyzed the conservation laws generated by the 

invariance of Eq. (1) under this group of 

symmetries. 

 (i) Time translation For the operator X
∂

t
 = , the Lie 

characteristic is: 

W = −ut 

Substituting it in (17) and after some appropriate 

calculations, the final expression for density of the 

local conserved vector takes the form: 
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Hence, the invariance of Eq. (1) under the time 

translation only provides a trivial conservation law. 

(ii) Translation of y For the operator X3 =      
𝜕

𝜕𝑦
 , 

the Lie characteristic is 

 W = −uy. (37) 

 Replacing this expression in (17), one can rewrite 

the flux in the equivalent form: 

 

Definition 4. The conservation law is said to be 

trivial if its density C 1 evaluated on the solutions 

of Eq. (1) is the divergence:  

Hence, the invariance of Eq. (1) under the 

translation of y only provides a trivial conservation 

law. 3.2.3. Infinite symmetry Lie group Similar 

calculations show that the symmetry operators Xf 

and Xg from (13), which involves two arbitrary 

functions of time, also give trivial conservation 

laws, in according with the previous condition (39). 

More exactly, in these two cases, the densities of 

conservation laws admit, respectively the 

divergence expressions: 

 

4. Types of solutions  

Let us present some symmetry reductions and 

associated invariant solutions for underlying Eq. 

(1). 4.1. Invariant solutions based on symmetry 

transformations  

For a start, let us derive the invariant solution 

generated by the invariance of the analyzed 

equation to the dilation group. We will use the 

assertion that the function u = Ψ(1)(t, x, y) is a 

group invariant solution of (1) if: 

 

where the operator X1 is provided by (13) This 

condition is equivalent to the partial differential 

equation: 

 

http://www.jbstonline.com/


Mrs. Ch.harishal, JBio sci Tech, Vol 10(3),2022, 01-09 

ISSN:0976-0172 

Journal of Bioscience And Technology 
www.jbstonline.com 

 

 

 

 
 
 

Page | 7  
 

 

 

 

http://www.jbstonline.com/


Mrs. Ch.harishal, JBio sci Tech, Vol 10(3),2022, 01-09 

ISSN:0976-0172 

Journal of Bioscience And Technology 
www.jbstonline.com 

 

 

 

 
 
 

Page | 8  
 

 

 Concluding remarks 

In this paper we used two important approaches for 

finding exact solutions of the 2D inviscid 

barotropic nondivergent vorticity equation (1), 

namely the Lie symmetry and Ibragimov’s 

approaches. Using the Lie symmetry algebra (13), 

three types of invariant similarity solutions 

generated by 1D subalgebra were pointed out. 

More precisely, we considered the subalgebras 

generated by X1, X3 +Xf , X3 +Xg and we found the 

associated solutions (46), (51), (52). These 

solutions were derived by solving the reduced 

PDEs (44), (49) written with respect to the 

appropriate invariant similarity variables. The 

solutions given show us that, in real atmospheric 

observations (in a background zonal basic wind), 

the stream function u may have not only linear 

shears, but also nonlinear shears. Another result of 

this paper is represented by the proof of strictly 

self-adjointness of the analyzed model, a feature 

which is essential in applying Ibragimov’s method. 

Further, the construction of conservation laws for 

all symmetry operators from the basis (13) were 

investigated. In that direction, the thorough 

calculations proved that only the dilation group 

admitted by (1) generates a non-trivial conservation 

law, described by the conserved vector (32). The 

translation group and the infinite symmetry 

transformations involving two arbitrary functions 

of time, provide trivial conservation laws. The 

solution (55) corresponding to concrete expressions 

of the non-trivial conserved vector mentioned 

above, was also obtained. As this solution 

possesses a stable localized structure, it is a Rossby 

solitary wave. 
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